The Helicobacter pylori VacA toxin is a urea permease that promotes urea diffusion across epithelia.

نویسندگان

  • F Tombola
  • L Morbiato
  • G Del Giudice
  • R Rappuoli
  • M Zoratti
  • E Papini
چکیده

Urease and the cytotoxin VacA are two major virulence factors of the human pathogen Helicobacter pylori, which is responsible for severe gastroduodenal diseases. Diffusion of urea, the substrate of urease, into the stomach is critically required for the survival of infecting H. pylori. We now show that VacA increases the transepithelial flux of urea across model epithelia by inducing an unsaturable permeation pathway. This transcellular pathway is selective, as it conducts thiourea, but not glycerol and mannitol, demonstrating that it is not due to a loosening of intercellular junctions. Experiments performed with different cell lines, grown in a nonpolarized state, confirm that VacA permeabilizes the cell plasma membrane to urea. Inhibition studies indicate that transmembrane pores formed by VacA act as passive urea transporters. Thus, their inhibition by the anion channel blocker 5-nitro-2-(3-phenylpropylamino) benzoic acid significantly decreases toxin-induced urea fluxes in both polarized and nonpolarized cells. Moreover, phloretin, a well-known inhibitor of eukaryotic urea transporters, blocks VacA-mediated urea and ion transport and the toxin's main biologic effects. These data show that VacA behaves as a low-pH activated, passive urea transporter potentially capable of permeabilizing the gastric epithelium to urea. This opens the novel possibility that in vivo VacA may favor H. pylori infectivity by optimizing urease activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ammonium metabolism enzymes aid Helicobacter pylori acid resistance.

The gastric pathogen Helicobacter pylori possesses a highly active urease to support acid tolerance. Urea hydrolysis occurs inside the cytoplasm, resulting in the production of NH3 that is immediately protonated to form NH4 (+). This ammonium must be metabolized or effluxed because its presence within the cell is counterproductive to the goal of raising pH while maintaining a viable proton moti...

متن کامل

Aneurysm and Helicobacter pylori relationship: the seropositivity of CagA, VacA and other antigens of Helicobacter pylori in abdominal and ascending aortic aneurysms.

Helicobacter pylori is thought to be related to atherosclerosis and aneurysm development. We aimed to detect virulance factors of H. pylori and examine the potential etiopathogenetic relationship between aortic aneurysm and H. pylori, 58 abdominal aortic aneurysm (AAA) and 38 ascending aortic aneurysm (AsAA) cases and 57 Healty control group (HCG) were included. We investigated H. pylori IgG by...

متن کامل

Vacuolating Cytotoxin of Helicobacter pylori

Vacuolating cytotoxin (VacA) is one of the most important virulence factors of H. pylori (Hp), which isthe only toxic protein that is secreted from Hp cell into the culture supernatant. The effects of VacA oneukaryotic systems is the subject of many previous and on going research studies. Intracellular targetsfor this toxin include: late endosomal and lysosomal compartments, m...

متن کامل

The Immunomodulator VacA Promotes Immune Tolerance and Persistent Helicobacter pylori Infection through Its Activities on T-Cells and Antigen-Presenting Cells

VacA is a pore-forming toxin that has long been known to induce vacuolization in gastric epithelial cells and to be linked to gastric disorders caused by H. pylori infection. Its role as a major colonization and persistence determinant of H. pylori is less well-understood. The purpose of this review is to discuss the various target cell types of VacA and its mechanism of action; specifically, w...

متن کامل

Helicobacter pylori Toxin Affects Epithelia Permeability

The effects of the vacuolating toxin (VacA) released by pathogenic strains of Helicobacter pylori on several polarized epithelial monolayers were investigated. Trans-epithelial electric resistance (TER) of monolayers formed by canine kidney MDCK I, human gut T84, and murine mammary gland epH4, was lowered by acid-activated VacA. Independent of the cell type and of the starting TER value, VacA r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 108 6  شماره 

صفحات  -

تاریخ انتشار 2001